
Math 4200-001
Week 5 concepts and homework

2.2-2.3 
Due Friday October 2 at 11:59 p.m.

2.2 :  5, 11.
2.3: 1, 3, 5, 7, 9, 10. In 9b write down a homotopy from the given curve to the standard
parameterization of the unit circle, in \ 0 , to justify your work.



Math 4200
Friday September 25  

2.2  Antiderivatives for analytic functions and Cauchy's Theorem:  We'll begin by 
completing Wednesday's notes on contour algebra and the extension of contour integrals 
to continuous piece-wise C1  contours .   In particular we'll check this extension of the 
FTC:

Theorem (FTC for contour integrals) Let A  open, f : A  continuous, 
: a, b  a piecewise C1curve.  If  f  has an analytic antiderivative in A , i.e.

F = f , then complex line integrals only depend on the endpoints of the curve , via the 
formula

f z  dz  F b F a

Then the focus of today's notes is to discuss converses to the FTC:  namely, what 
conditions on contour integrals and f z  imply that f z  has a complex antiderivative 
F z ?

Announcements:  

Warm-up exercise: 



Contour integrals and antiderivatives:   

Let f : A  continuous, A  open and connected.  When does f  have an 
antiderivative F z ,  i.e. F z = f z z A  ?  (Note:  we've discussed before why 
antiderivatives on open connected domains are unique up to additive constants, because 
their differences have zero derivative.)

Theorem 1  The following are equivalent, for f : A  continuous, where A  is open 
and connected:

     (i)  F : A  such that F = f  on A  

     (ii)  Contour integrals are path independent, i.e. for all choices of initial point P  and
terminal point Q in A ,

0

f z  dz =

1

f z  dz

whenenver 0, 1  are piecewise C1  (continuous) paths that start at P  and end at Q.  
     
proof:  

i ii    (Use FTC)



ii i   We are assuming the following:

     (ii)  f : A  continuous, where A  is open and connected:  Contour integrals for f  
are path independent, i.e. for all choices of initial point P  and terminal point Q in A ,

0

f z  dz =

1

f z  dz

whenenver 0, 1  are piecewise C1  paths that start at P  and end at Q.  

So, fix any z0 A .  Because A  is open and connected it is pathwise connected, and for 

each z A  there are piecewise  C1  contours in A  which start at z0  and end at z.  (See 

appendix.)  Pick any such contour and denote it by z0z.  Define our candidate 

antiderivative by 

F z =

z0z

f  d ,

By hypothesis F z  is well-defined, since contour integrals are path-independent.  Our 
work is to show that F  is complex differentiable at each z A  and that its derivative is 
f .  We'll verify the affine approximation formula for F !



Theorem 2  If A  is open and simply connected.  Let f : A  be analytic and C1 .  Then
f  has antiderivatives F , unique up to additive constants.

proof:  We'll use Green's Theorem to explain why the path-independence condition (ii) 
of Theorem 1 holds.  Thus antiderivatives exist, and one way to express them is via 
contour integrals as in the previous discussion: 

F z =

z0z

f  d

Notice how we will use the "no-holes" idea of simply-connected.  This explanation is not
completely rigorous, but we'll fix that lack of rigor in section 2.3 by defining simply 
connected more carefully, and also by using different techniques that don't depend on 
Greens' Theorem and our heuristic pictures of what contours look like.



Example (like hw due today)   Discuss whether it is possible to define log z as an 
analytic (single-valued) function on each of the following three domains:



Appendix:  Connected domains, path connected domains, simply connected domains:  
Some Math 3220/Chapter 1.4 analysis background material we need now:

Recall that a domain A  is called connected iff there is no disconnection of A  into 
disjoint (relatively) open and non-empty subsets U, V  i.e. such that

A = U  V
 U V = .

If we restrict to open domains A , then subsets U, V  that are relatively open are actually 
open.  

There is a related definition:
Definition  A subset A  is called path connected iff P, Q A , there exists a 
continuous path : a, b A  such that a = P, b = Q.

Theorem  Let  A  be open.  Then A  is connected if and only if A  is path connected.
 Furthermore, if A  is connected then there are piecewise C1  paths connecting all 
possible pairs of points in A .  (Analogous theorem holds in n .)
proof:  ⇒ :  Let A  be connected and open.  We will show it is path connected, with 
piecewise C1  paths.  Pick any base point z0 A .  Define U  to be the set of points that 

can be connected to z0  with a piecewise C1  path.  U  is non-empty since D z0; r U  
as long as r is small enough so that the disk is in A .  In fact,  for all z D z0; r  we 
can use the straight-line paths

t = z0 t z z0 ,    0 t 1
to connect z0  to z.  



The proof that U  is open is analogous:  Let z U  and let  be a piecewise C1  path 
connecting z0  to z.  Then for w D z, r A  and 

1 t = z t w z ,    0 t 1

the combined path 1  is a piecewise C1  path connecting z0  to w.  Thus U  is open.

But the complement V A U  is open by a similar argument:  If V  is non-empty, let
z1 V , D z1; r A .  Then D z1, r V  as well, since if z U D z1; r  there
is a piecewise C1  path  from z0  to z, and letting 

2 t = z t z1 z ,    0 t 1,
the path 2  would connect z0  to z1 .  Thus, since A  is connected, we must have that 
V = A U  is empty.



path connected implies connected:  
Let A  be path connected.  Let A = U  V  with U, V  open, U  non-empty, and 
U V = .  We will show V  is empty.  If not, pick P U, Q V , and let   

: a, b
be a continuous path connecting P  to Q, i.e. a = P, b = Q.  Let T a, b  be 
defined by

T sup t a, b   a, t U

Because U  is open, T a.  If T = b we would have Q U  which would be a 
contradiction.  But if a T b then T  is in neither U  nor V :  If T U  then 
by continuity and U  open, there exists 0 so that T, T U , hence 

a, T U , contradicting the definition of T .   Similarly, if T V , 
continuity of  and V  open implies there exists 0 so that T , T V , 
another contradiction.  Thus T  can't exist, and V  must be empty.


